A Brief History of Intel CPU Microarchitectures

Xiao-Feng Li
xiaofeng.li@gmail.com

2013-02-10
Notes

• The materials are only for my personal use.
 – Not representing Intel opinions
 – Not a complete list of Intel microprocessors
 – Not specifications of Intel microprocessors
Intel Pre-Processor Devices

• Intel founded in 1968
• Intel 3101, 1969
 – Intel first product
 – World first solid state memory device
 – 16 x 4-bit SRAM
• Intel 1103, 1970
 – World first DRAM product, 1K-bit PMOS
 – Used in HP 98000 series computers
 – By 1972, world bestselling memory chip, defeating magnetic memory
Moore’s Law

 - “The complexity for minimum component costs has increased at a rate of roughly a factor of two per year.”
 - Moore refined it to “every two years” in 1975
 - Also quoted as “every 18 months” by David House, (referring to performance)
 - Most popular formulation: #transistors/IC
- Carver Mead coined it as Moore's law around 1970
 - “Tall & Thin engineers”
- Ultimate limit of Moore’s Law
 - No one knows
 - How to use the capability? Resource limit?
Intel MCS Family

<table>
<thead>
<tr>
<th>MCS Family</th>
<th>Intel CPU</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCS-4</td>
<td>4004</td>
<td></td>
</tr>
<tr>
<td>MCS-40</td>
<td>4040</td>
<td>MCS-40 sometimes refers also to the MCS-4 family</td>
</tr>
<tr>
<td>MCS-8</td>
<td>8008</td>
<td></td>
</tr>
<tr>
<td>MCS-80</td>
<td>8080</td>
<td>MCS-80 sometimes refers also to the MCS-8 family</td>
</tr>
<tr>
<td>MCS-85</td>
<td>8085</td>
<td>Sometimes refers to the MCS-80 and MCS-8, sometimes as the MCS-80/85 family</td>
</tr>
<tr>
<td>MCS-86</td>
<td>8086, 8088, 80186, 80188, 80286, 80386, 80486, Pentiums</td>
<td></td>
</tr>
</tbody>
</table>
Intel 4004, 1971

- World first “general purpose” micro-processor
- Lead designers
 - Ted Hoff, Federico Faggin, Stan Mazor, Masatoshi Shim
- Data
 - Word width: 4-bit
 - 2300 transistors
 - Clock: 108KHz/500/740
 - 46 instructions
 - Registers: 16 x 4-bit
 - Stack: 12 x 4-bit
 - Address space
 - 1Kb of program, 4Kb of data
Intel 8008, 1972

• **World first 8-bit microprocessor**
• **Designers**
 – Ted Hoff, Stan Mazor, Hal Feeney, Federico Faggin
• **Data**
 – Word width: 8-bit
 – Clock: 800KHz
 – 3500 transistors
 – 48 instructions
 – Registers: 6 x 8-bit
 – Stack: 17 x 7-bit
 – Address space: 16KB
Intel 8080, 1974

- Lead designers
 - Federico Faggin (then to zilog), Masatoshi Shima, Stan Mazor
 - "The 8080 really created the microprocessor market"

- Used in MITS Altair 8800, 1975
 - "Microcomputer"
 - Also Intel Intellec-8

- Data
 - Word width: 8-bit
 - 4500 transistors
 - Clock: 2M-3MHz
 - Address space: 64KB
 - Registers: 6 x 8-bit
 - IO ports, Stack pointer

A follow up: 8085
Intel 16-bit Microprocessors

• Intel 8086, 1978 - first x86 family microprocessor
 – Source compatibility with 80xx lines – business win
 – 16-bit: all registers, internal and external buses
 – 29,000 transistors, 5MHz initially
 – 20-bit address bus - 4MB address space
 • 16-bit register - segmentation programming
• IBM PC selected 8088, 1981
• Intel 80286, 1982
 – 134,000 transistors, 6M-8MHz initially (0.21 IPC)
 • 10MHz ➔ 1.5MIPS
 – Used by IBM PC/AT, 1984
 – Designed for multi-tasking with MMU “protection mode”

Then Microsoft and IBM split
Intel iAPX432, 1981

- Intel i432, Intel first 32-bit microprocessor design
 - "Intel Advanced Processor architecture"
 - Started in 1975 as the 8800, follow-on to the existing 8008 and 8080 CPUs
 - Intended purely 32-bit, to be Intel backbone in the 1980s, to support Ada, LISP, advanced computations
 - Micro-mainframe
 - HW supports to all the good terms
 - OO programming and capability-based addressing, Edsger Dijkstra's on-the-fly parallel GC, multi-tasking and IPC, Multiprocessing, Fault tolerance, I/O
 - Problems: two-chip impl., lack of cache, bit-aligned var-len instructions, Ada compiler
 - Failed: ¼ performance of 286 as of 1982
Intel x87 Family

- Intel 8087, 1980
 - First floating-point coprocessor for 8086 lines
 - Performance: +20% ~ 5x; 50,000 FLOPS
 - Floating registers form 8-level stack: st0~st7
 - 8-bit/16-bit
 - IEEE 754
- Intel 80287 – 16-bit
- Intel 80387, 80487 – 32-bit
- Starting from Intel 80486DX, Pentium and later has on-chip floating point unit
 - “DX” was used for on-chip FP capability
Intel 80386, 1985

- Intel first X86 32-bit flat memory model – 4GB space
 - 80386 instruction set, programming model, and binary encodings are the common denominator for all → IA-32, i386, x86
 - Paging to support VM, hardware debugging, first use of pipeline
 - Not necessarily a big performance improvement over 286
 - 275,000 transistors
 - 12MHz initially, later 33MHz → 11.4MIPS
- Compaq: first PC using 386, legitimize PC “clone” industry
- Andy Grove decided to single-source producing 386
 - Later changed in 1991 by AMD AM386
- Chief architect: John H. Crawford
Intel i960, 1985

- **Intel 80960, Intel first RISC microprocessor**
 - Best-selling embedded microcontroller at the time
 - After BiiN project, which was for high-end high-reliability processor jointly with Siemens
 - In response to i432 failure, avoid i432 problems
 - But, “Billions Invested In Nothing”
 - Lead: Glenford Myers
 - Intended to replace 80286/i386, and for UNIX systems (e.g., NeXT)
 - Removed all the “advanced” features of BiiN
 - Used Berkeley RISC (vs. Stanford), flat memory model, superscalar
 - Dropped after acquiring StrongARM in late 90’s
 - Price/perf/power no longer competitive
 - Team went to design another i386 processor – P6
Intel 80486, 1989

• Improvements
 – Atomic instructions
 – On-die 8KB SRAM cache
 – Tightly coupled pipelining: 1 IPC
 • 50MHz \(\rightarrow\) 40MIPS on average and 50MIPS at peak
 – Integrated FPU (no longer need x87)
 – First chip exceeds 1M transistors

• Gaming is critical
 – 486 ended DOS games (Later, 3D ended 486)

• More manufacturers, AMD Am5x86, Cyrix Cx5x86, etc.

• Competitor
 – Motorola 68040 in Macintosh Quadra
Intel i860, 1989

• Entirely new RISC microprocessor
 – VLIW and high-performance FP operations
 • 32-bit ALU core, and 64-bit FPU (adder, multiplier, GPU)
 • Register sets: 32 x 32-bit integer, 16 x 64-bit FP
 • GPU uses FP registers as 8 x 128-bit, with SIMD (Influenced MMX)
 • 64/128-bit buses, fetch 2 x 32-bit instructions

• Dropped in mid-90’s
 – Compiler support was mission impossible
 – Context switch took 62 - 2000 cycles → Unacceptable for GPCPU
 – Incompatible with X86, Confusing the market with Intel 486 CISC

• Used in some parallel computers, graphic workstations
 – Windows NT (N-Ten) originally developed for i860 N10
 – NeXT, SGI, etc. used it as gfx accelerator
Intel Pentium, 1993

- Pentium means “5”, because court disallowed number-based trademark
 - Later Pentium was used in many Intel processors, no longer an micro-architecture branding – vs. Celeron

- P5 micro-architecture
 - **First X86 superscalar micro-architecture**
 - Dual integer pipelines, separate D/I caches, 64-bit external data-bus
 - 60M-300MHz (75 MHz → 126.5 MIPS)
 - 60/66MHz 0.8um in 5v called “coffee warmer”
 - Competitors
 - X86: AMD K5/K6, Cyrix 6x86, etc. Risc: M68060, PPC601, SPARC, MIPS, Alpha

- Pentium Overdrive package
 - Started to use a cooler
Intel MMX, 1996

• SIMD instruction set, introduced with P5
 – “Matrix Math Extensions”, mainly for graphics
 – 8 x 64-bit integer registers MM0 ~ MM7, alias of FPU ST0 ~ ST7
 – Integer was not enough soon due to gfx cards
 – AMD 3DNow! in K6-2, 1998
 • Introduced single-precision FP
 – Intel introduced SSE, 1999
 • Started with Pentium-III
 • New XMM register set
 • 70 new instructions

• MMX in Xscale
 – iwMMXt : "Intel Wireless MMX Technology"
Intel Pentium Pro, 1995

- P6 (or i686), completely new apart from Pentium (P5)
 - #transistors: Pentium 3.1M, Pentium MMX 4.5M, Pentium Pro 5.5M
 - Out-of-order execution
 - Speculative execution, RISC-like micro-ops
 - Three pipelines, 2 integer, 1 fp
 - Innovative on-package level-2 cache
 - Manufacturing did allow on-die L2 cache
 - Same CPU clock rate, non-blocking, SMP advantage
 - Dies had to be bonded early → Low yield rate and high price
- 36-bit address bus (PAE), low 16-bit performance
- Performance better than best RISC with SPECint95, but only about half with SPECfp95
Intel P6 Processors (cont.)

• Pentium II, 1997, 7.5M transistors
 – Slot replaced Socket with a daughterboard
 • Solved the issues of off-package L2 cache in PPro with half CPU clock
 – Implemented MMX, improved 16-bit performance
 – Celeron and Xeon, 1998
 • Celeron: no on-die L2-cache, 66MT/s FSB
 – To win low-end and to justify Xeon
 • Pentium II Xeon: L2-cache, 100MT/s, SMP

• Pentium III, 1999
 – Introduced SSE for FP and vector processing
 – On-die L2 cache with .18um Coppermine
 – PSN (Processor Serial Number) controversy
Intel SSE

- Intel Streaming SIMD Extensions, 1999 in PIII
 - MMX uses FP registers for SIMD data, and has only integer SIMD
 - SSE introduces separate XMM registers

SSE
- All on MMX, making MMX redundant
- Pack/Unpack double-precise FP
- Integer arithmetic

SSE2
- DSP-oriented support
 - Packed AddSub FP
 - Horizontally computation
 - Monitor/Mwait
 - Complex number support
 - Low overhead unaligned load

SSE3
- Multiply&add, Multiply&Round/Scale
- Packed AddSub DWORDS
- Packed align/sign/abs
- Byte level shuffle

SSSE3
- Packed DWORD and QWORD arithmetic
- Blending
- Sums of absolute differences
- Dot for AOS (Array of Structs) data
- Packed Integer Min and Max
- Floating Point Round
- Register Insertion/Extraction
- Packed Format Conversion
- Packed Test and Set, Compare for Equal

SSE4.1
- Advanced String Operations
 - Fast CRC
 - POPCNT

SSE4.2
- 256 bit
 - 3 and 4 operands support
 - Power efficient

AVX
- Up to 256-bit wide vector FP data

2013/02/10
Brief history of Intel CPU uArch - xiaofeng.li@gmail.com
Intel Xscale

• Intel acquired StrongARM from DEC, 1997
 – To replace the RISC processors i860 and i960
 – StrongARM implemented ARMv4 ISA
• Successor, Xscale implemented ARMv5
 – Seven-stage integer and an eight-stage memory superpipelined microarchitecture, 32KB data cache and 32KB instruction cache
• Xscale processor family
 – Application Processors (with the prefix PXA)
 – I/O Processors (with the prefix IOP)
 – Network Processors (with the prefix IXP)
 – Control Plane Processors (with the prefix IXC).
 – Consumer Electronics Processors (with the prefix CE)
• Intel sold Xscale PXA business to Marvell, 2006
Intel Itanium, 2001

• Originated from HP
 – EPIC: explicitly parallel instruction computing
 – 1994, worked with Intel on IA-64, to release product in 1998
 – All believed EPIC would supplant RISC and CISC
 • Compaq and SGI gave up Alpha and MIPS
 • Microsoft and SUN etc developed Oses for it
 – 1999, Intel named it Itanium

• Data
 – Speculation, prediction, predication, and renaming
 – 128 integer registers, 128 FP registers, 64 one-bit predicates, and eight branch registers
 – 128-bit instruction word has 3 insns, dual-issue, max 6 IPC
 – X86 support in HW initially and then purely in SW
Intel Pentium 4, 2000

• NetBurst microarchitecture (P68, successor to P6)
 – Pursue higher frequency, smaller IPC
 • Hyper Pipelined: 20-stage Willamette, 31 Prescott (vs. 10 in P6)
 • Rapid Execution Engine: Two ALUs in the core are double-pumped
 • Execution Trace Cache, SSE2, L3-cache (Extreme Edition)
 • Hyper-Threading Technology
 – Prescott: 90nm, SSE3, HT, Intel-64
 • But performance worse than Northwood with similar clock
 • Designed to be 10GHz, but achieved 3.8GHz
 – Pentium D – Dual-core

• Abandoned:
 – High power consumption and heat intensity
 – Inability to increase clock speed, and inefficient pipeline
Intel Pentium M, 2003

- From Pentium III, based on P6 uArch
 - FSB interface of Pentium 4, SSE2, much larger cache, improved decoding/issuing FE
 - L2 cache only switches on the portion being accessed
 - SpeedStep 3 tech, TDP: 5-27W
 - Dynamically variable clock frequency and core voltage
 - 1.6 GHz Pentium M performance > 2.4 GHz Pentium 4-M
- Next generation released as Intel Core brand, Jan 2006
 - Core Duo used in Macbook Pro, Core Solo in Mac Mini
- Core 2: Intel-64 Core uarch, July 2006
 - Larger cache, SSE4.1 in 45nm
 - Solo, Duo, Quad, Extreme
- No HT, no L3 cache, mostly
Intel Tick-Tock Model

- Introduced since 2007 to describe progress cadence
 - “Tick”: shrinking of process technology – same uArch
 - “Tock”: new microarchitecture – same process
 - Tick-Tock is expected alternating every year

<table>
<thead>
<tr>
<th>Architectural change</th>
<th>Codename</th>
<th>uArch</th>
<th>Process</th>
<th>Release date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tick</td>
<td>New Process</td>
<td></td>
<td>65 nm</td>
<td>Jan 5, 2006</td>
</tr>
<tr>
<td>Tock</td>
<td>New uArch</td>
<td>Conroe</td>
<td>Core</td>
<td>July 27, 2006</td>
</tr>
<tr>
<td>Tock</td>
<td>New uArch</td>
<td>Nehalem</td>
<td>Nehalem</td>
<td>Nov 17, 2008</td>
</tr>
<tr>
<td>Tick</td>
<td>New Process</td>
<td>Westmere</td>
<td>32 nm</td>
<td>Jan 4, 2010</td>
</tr>
<tr>
<td>Tock</td>
<td>New uArch</td>
<td>Sandy Bridge</td>
<td>Sandy Bridge</td>
<td>Jan 9, 2011</td>
</tr>
<tr>
<td>Tick</td>
<td>New Process</td>
<td>Ivy Bridge</td>
<td>22 nm</td>
<td>2012</td>
</tr>
<tr>
<td>Tock</td>
<td>New uArch</td>
<td>Haswell</td>
<td>Haswell</td>
<td>2013</td>
</tr>
<tr>
<td>Tick</td>
<td>New Process</td>
<td>Broadwell</td>
<td>14 nm</td>
<td>2014</td>
</tr>
<tr>
<td>Tock</td>
<td>New uArch</td>
<td>Skylake</td>
<td>Skylake</td>
<td>2015</td>
</tr>
<tr>
<td>Tick</td>
<td>New Process</td>
<td>Skymont</td>
<td>10 nm</td>
<td>2016</td>
</tr>
<tr>
<td>Tock</td>
<td>New uArch</td>
<td></td>
<td></td>
<td>2017</td>
</tr>
</tbody>
</table>
Intel Nehalem, 2008

- Successor of Core micro-architecture
 - Was planned as Netburst evolution, but then a completely different design of microarchitecture, 45nm

- Data
 - Multi-core, on-package GPU
 - Integrated memory controller, QPI replaced FSB
 - Integrated PCI-E and DMI replacing northbridge
 - HT, and shared L3 cache, 2nd-level branch predictor and TLB
 - SSE4.2, atomic overhead is reduced by 50%
 - Over Penryn, 20% gain performance/clock, 30% cut power/performance
 - Core i3, i5, i7, Celeron, Pentium, Xeon

- Tick: Westmere, 32nm
 - AES-NI, integrated graphics, VT 16-bit guest, 1GB page
Intel Atom Processors, 2008

• Based on Bonnell microarchitecture, 45nm
 – Dual-issue in order, 16-stage pipeline
 – On/off: SSEx, Intel-64, HT
 – TDP: \textbf{n watt}
 – Only around 4\% of instructions produce multiple micro-ops
 • Significantly fewer than the P6 and NetBurst microarchitectures
 • Can contain both a load and a store with an ALU operation
 • Partial revival of old principle in P5 and 486 for perf/watt
 – For mobile and embedded devices
• Tick: Saltwell, 32nm, 2011
Accelerating to SoC
Intel Sandy Bridge, 2011

• New microarchitecture after Nehalem, 32nm
 – Shared L3 cache for cores, including GPU
 – Two load/store ops/cycle for memory channel
 – **Ring bus interconnect** between Cores, Graphics, Cache and System Agent Domain
 – AVX
 – Compared to Nehalem, 17% gain in performance-clock over Lynnfield, 2x graphics over Clarkdale

• **Tick: Ivy Bridge, 22nm, 2012**
 – 3D gates (tri-gate transistor)
Pipeline Stages

<table>
<thead>
<tr>
<th>Microarchitecture</th>
<th>Pipeline stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>P5 (Pentium)</td>
<td>5</td>
</tr>
<tr>
<td>P6 (Pentium Pro)</td>
<td>14</td>
</tr>
<tr>
<td>P6 (Pentium 3)</td>
<td>10</td>
</tr>
<tr>
<td>NetBurst (Willamette)</td>
<td>20</td>
</tr>
<tr>
<td>NetBurst (Northwood)</td>
<td>20</td>
</tr>
<tr>
<td>NetBurst (Prescott)</td>
<td>31</td>
</tr>
<tr>
<td>NetBurst (Cedar Mill)</td>
<td>31</td>
</tr>
<tr>
<td>Core/NHM/SNB/HSW</td>
<td>14</td>
</tr>
<tr>
<td>Atom Bonnell</td>
<td>16</td>
</tr>
<tr>
<td>Silvermont/Airmont</td>
<td></td>
</tr>
</tbody>
</table>

Brief history of Intel CPU uArch - xiaofeng.li@gmail.com
References

• http://en.wikipedia.org/wiki/List_of_Intel_Atom_microprocessors