
Autosys: Performance driven automatic system
configuration tool

ABSTRACT
With the widespread use of web applications and especially
increasing popularity of e-commerce, social networks, web
services and cloud computing has introduced a number of
research challenges to find the optimum system configura-
tion to support service level agreements. Two most com-
monly used QoS metrics for web applications are response
time for the user and throughput analysis. Web application
normally consists of multiple tiers and a request might have
to traverse through all the tiers before finishing its process-
ing. As a result a response time for a given request is a
sum of response time of all the tiers. In the same way over-
all throughput is also a function of all the tiers. Since the
expected response time at any tier depends upon various
software and hardware properties, many different configura-
tions can provide the same QoS requirements. Researchers
have shown that finding theoretical optimum configuration
to meet QoS and cost requirements is a NP complete prob-
lem [8], which leads us to find alternative approaches for
solving optimum system configuration problem. In this pa-
per we propose an approach which combines empirical data
and case base reasoning techniques to find the optimal sys-
tem configuration.

Categories and Subject Descriptors
System Configuration [Case Based Reasoning]: Cloud
Computing

Keywords
System Configuration, Cloud Computing, Case Base Rea-
soning

1. INTRODUCTION
Increasingly use of Web applications, such as electronic-

commerce, social networks, search engines, financial services
and Web services, has introduced a number of new research
challenges for finding the optimum configuration to meet

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

the QoS requirements. The widespread use of Cloud com-
puting as a system deployment infrastructure has made the
problem further complicated. As most of these applications
are user oriented, one of the main objectives is to keep their
users satisfied by means of meeting certain quality of service
guarantees. Two most commonly used quality of service pa-
rameters for these applications are a) response time; time
taken to process a user request and b) throughput analysis;
number of maximum requests that the system can process
at any given time.

Apart from the usual advantages of modularity with well
defined interfaces, the multi-tier architecture is intended to
allow any of the tiers to be upgraded or replaced indepen-
dently as requirements or technology change. As a result
most of the applications nowadays commonly use multi-
tiered architecture, where a user’s request is handled by
multiple tiers (layers) of servers. For example, a typical web-
service system can be thought to consist of three tiers: web
servers, application servers and database servers. First user
sends the request to the Web server and then Web server
does the load balancing and forward the request to the ap-
plication server, and then application server might need to
talk to database server to obtain user data or data requested
by the user. Within each tier, multiple machines can be pro-
visioned to share the incoming workload and provide addi-
tional computational power. As a consequence of this type
of configuration, overall system performance depends on a
number of different known and unknown parameters, which
expands from hardware configurations(number of servers,
memory, CPU etc...) and software configurations(thread
pools, connection pools, garbage collection etc...). This makes
the theoretical analysis of these systems so complicated and
finding optimum configuration using theoretical approaches
is shown to be a NP complete problem [8].

In this paper we present an approach which combines em-
pirical analysis of multi-tier system and case based reasoning
(CBR) approaches to find the optimal configuration to meet
the service level agreements and cost requirements. In our
empirical system analysis we have used an automated stag-
ing analysis tool called Elba [2] [11] [14], and we have col-
lected more than 1000GB of data in over 6,000 experiments.
These experiments cover scale-out scenarios with up to 30
servers with different software and hardware configurations.
This includes a number of different applications server types
(Apache Tomcat and JOnAS), various types of database sys-
tems (MySQL and PostgreSQL), different type of environ-
ments (Amazon EC2 and Emulab), different types of ap-
plications (RuBBoS and RuBiS), various workloads (1000

clients to 13000 clients) and different types request types
(read only and read write mix). Our data set consists both
QoS data (response time and throughput) and system data
(memory usages, CPU usage, IO usage, network usages and
etc...). We apply CBR retrieving algorithms to search our
dataset for a given user query and provides the user with
a small set of configurations from which user can pick the
best match, and then our system retain those information
for future retrieving process.

This paper makes two main contributions, firstly it uses
an empirical data to provide the optimum configuration to
meet the certain service level agreements under certain cost
restrictions. Secondly it uses empirical data to provide sys-
tem bottlenecks for a given configuration (combination of
both software and hardware) under certain workload. In
the first case we use the Cover tree retrieval [15] mechanism
to search the dataset for a given SLA requirements, and in
the second case we use concept learning mechanism [16] to
find the system bottlenecks for a given configurations. We
have implemented two versions of our tool, standalone ver-
sion and web based version.

The remainder of this paper is structured as follows: Sec-
tion 2 provides brief background and introduces some of
the concepts, and Section 3 outlines experimental setup and
methods. Section 4 provides detailed description about our
contribution and implementation. In Section 5 we evaluate
two retrieval algorithms we have used based on the perfor-
mance. Related work is summarized in Section 6, and Sec-
tion 7 concludes the paper.

2. BACKGROUND
This section provides a brief description of techniques and

system we have used. In section 2.1 we give a motivating use
case where our tool can be used, and next section provides
an overview on Elba staging system. In section 2.3 we in-
troduce Amazon EC2 cloud, in last two sections we discuss
two retrieving algorithms we have used for our tool.

2.1 Motivating Example
Assume someone wants to start an e-commerce company

similar to ebay or amazon, and further assume that he has
also developed the initial QoS metrics and he is under a
certain budget. Now he needs to find the number of servers
he needs to buy to meet the requirements, or he needs to find
the number of nodes he needs if he is going to a commercial
cloud. To succeed in the business first impression should be
the best impression, so he needs to make sure he has all the
resources in place to meet the estimated QoS requirements.
The main problem is how he finds the system configuration
he wants to achieve his goals, one way to do is; he buys small
number of servers and then sees whether those can provide
his requirements or not. If his selection was not correct his
business might be in trouble. Other solution is to buy large
number of servers, which will cause for short term (initial
budget) and long term cost (power and other maintaining
cost). In these scenarios our tool become very useful, he can
get very good initial estimate using our tool, which help him
to save both his time and money.

2.2 Elba Staging System
The goal of the project is to provide a thorough, low-cost,

and an automated approach to staging that overcomes the
limitations of manual approaches and recaptures the poten-

tial value of staging. In Elba processes there are three major
components when automating the staging, i.e., the appli-
cation, the workload, and finally quality of service require-
ments. One of the main research challenges is the integrated
processing of these different specifications through the auto-
mated staging steps. In other words we need to merge Ser-
vice Level Agreement (SLA), Test Based Language (TBL)
and workflow into the automating process and come up with
a specification for the application. Specification of the pro-
duction applications and their execution environments con-
sists of a number of research challenges. First, automated
re-map of deployment locations to staging locations. Second
create consistent staging results across different experiments
and extensibility to many environments and applications.

2.3 Amazon EC2
Amazon Elastic Compute Cloud (Amazon EC2) [5] is a

web service that provides resizable compute capacity in the
cloud. It is designed to make web-scale computing easier
for developers. Amazon EC2’s simple web service interface
allows us to obtain and configure capacity with minimal fric-
tion. It provides us with complete control of our computing
resources and let us run on Amazon’s proven computing en-
vironment. Amazon EC2 reduces the time required to ob-
tain and boot new server instances to minutes, allowing us to
quickly scale capacity, both up and down, as our computing
requirements change. Amazon EC2 changes the economics
of computing by allowing us to pay only for capacity that
we actually use. Amazon EC2 provides developers the tools
to build failure resilient applications and isolate themselves
from common failure scenarios.

2.4 Cover Tree algorithm
Cover tree is a tree data structure for fast nearest neighbor

operations in general n-point metric spaces (where the data
set consists of n points) [15]. The data structure requires
O(n) space regardless of the metric’s structure yet maintains
all performance properties of a navigating net [17]. If the
point set has a bounded expansion constant c, which is a
measure of the intrinsic dimensionality, as defined in [18], the
cover tree data structure can be constructed in O [c6nlogn]
time. Furthermore, nearest neighbor queries require time
only logarithmic in n, in particular O [c12logn] time. A cover
tree T on a data set S is a leveled tree where each level is
a “cover” for the level beneath it. Each level is indexed by
an integer scale i which decreases as the tree is descended.
Every node in the tree is associated with a point in S. Each
point in S may be associated with multiple nodes in the tree;
however, any point appears at most once in every level.

2.5 Exemplar-based Concept Learning Algo-
rithm

Concept Learning is a heuristic approach for classifica-
tion [16], where this approach differs from the usual con-
cept learning task in three ways. First classification must
be explained, second, a program for this task must accom-
modate incomplete case description, and third, the program
must learn domain specific knowledge for inferring case fea-
tures needed for classifications. The traditional approach
to concept learning and classification relies on generaliza-
tions. However with exemplar based approach, concepts are
learned by retaining exemplars, and new cases are classified
by matching them with the exemplars.

3. EXPERIMENTAL ENVIRONMENT
In this section we first we discuss two benchmarks applica-

tion we have used for our experiments, and then we discuss
our experimental infrastructure, software configuration and
magnitude of our data set.

3.1 Benchmark Applications
Among N-tier application benchmarks, RUBBoS and RU-

BiS have been used in numerous research efforts due to its
real production system significance. According to our un-
derstanding these two applications can mimic the behavior
similar to an e-commerce application and social network. As
a result our assumption is that the data collected by running
these two can be used to find the system configuration for
similar type of applications.

RUBBoS [3] is an N-tier e-commerce system modeled on
bulletin board news sites similar to Slashdot. The bench-
mark can be implemented as three-tier (web server, appli-
cation server, and database server) or four-tier (addition of
clustering middleware such as C-JDBC) system. The bench-
mark places high load on the database tier. The workload
consists of 24 different interactions (involving all tiers) such
as register user, view story, and post comments. The bench-
mark includes two kinds of workload modes: browse-only
and read/write interaction mixes.

RUBiS [4] is an auction site prototype modeled after eBay.com
that is used to evaluate application design patterns and ap-
plication server’s performance scalability. This auction site
benchmark implements the core functionality of an auction
site: selling, browsing and bidding. It distinguishes between
three kinds of user sessions: visitor, buyer, and seller. For a
visitor session, users need not register but are only allowed
to browse. Buyer and seller sessions require registration. In
addition to the functionality provided during visitor sessions,
during a buy session users can bid on items and consult a
summary of their current bids, rating and comments left by
other users. Seller sessions require a fee before a user is
allowed to put up an item for sale. An auction starts im-
mediately and lasts typically for no more than a week. The
seller can specify a reserve (minimum) price for an item.

3.2 Experimental Infrastructure
We have run a number of experiments over a wide range

of configurations and workloads in two main different en-
vironments (Amazon EC2 [5] and Emulab [1]) . Table 1
shows the magnitude and complexity of a typical experi-
mentation cycle, and Table 2 summarizes different types of
software configuration and hardware configuration we have
used for our empirical system testing. For each of the differ-
ent hardware types and database management system con-
figurations, the total experimental data output averaged at
around 277,841,000 one second granularity system metric
data points (e.g., network bandwidth and memory utiliza-
tion) in addition to higher-level monitoring data (e.g., re-
sponse times and throughput). In the course of conduct-
ing our experiments, we have used (both concurrently and
consecutively) 91,598 test bed hardware nodes. Our data
warehouse is filled with around 3,334,100,000 system metric
data points. In order to investigate system behavior as low
as SQL query level, we have modified (if necessary) the origi-
nal source code of all software components to record detailed
accounting logs. Because an empirical analysis of the exper-
imental results shows that detailed logging can affect overall

performance up to 8.5 percent, we additionally implemented
effective sampling algorithms to minimize the logging per-
formance impact. We should mention that all system per-
formance measurements in this paper (i.e., throughput and
response time) were collected without such detailed logging
turned on. The latter was solely used for specific scenario
analysis.

Although the deployment, configuration, execution, and
analyzing scripts contain a high degree of similarity, the dif-
ferences among them are subtle and important due to the
dependencies among the varying parameters. Maintaining
these scripts by hand is a notoriously expensive and error-
prone process. To enable experimentation at this scale,
we employed an experimental infrastructure created for the
Elba [2] [13] project to automate system configuration man-
agement, particularly in the context of N-tier system stag-
ing. The Elba approach divides each automated staging
iteration into steps such as converting policies into resource
assignments, automated code generation, benchmark execu-
tion, and analysis of results.

4. IMPLEMENTATION
This section provide overview of our system implementa-

tion, first we discuss two different types of our implemen-
tation; standalone version and application server version.
Then we discuss about implementation details of two algo-
rithms that we have used, and finally we discuss interaction
to jColibri framework [6].

4.1 Standalone Implementation
We create standalone version of AutoSys with the basic

CBR cycle by using the jCOLIBRI framework [6]. The
jCOLIBRI framework is an object-oriented framework in
Java for building Case-Based Reasoning (CBR) systems.
It supports Textual-CBR, Knowledge Intensive CBR with
Description Logics reasoning through Ontologies, Web in-
terfaces, evaluation of the generated applications. A typ-
ical CBR cycle includes retrieval, revise, reuse and retain.
In the retrieval stage, the customer specifies a configura-
tion according to the configuration attributes. For example,
he can specify hardware configurations, software configura-
tions, applications, web configurations, app configurations,
cluster configurations and database configurations. After
retrieval, the CBR system will return the most similar case
to the customer. The solution may include the response
time, the throughput and possible bottleneck as well as
CPU utilization and NetWork utilization. For another ex-
ample, he can also find whether a given configuration causes
system bottlenecks or not. Figure 1 shows a retrieval result
for a query containing: read write workload of 2000 with 14
nodes and it show that the system does not have bottlenecks
for the given configuration.

4.2 Web Based Implementation
We found that making our data available over the web

will be useful for anyone who is interested in finding system
configuration for a given SLA. The key assumption is he can
decide number of servers he needs to buy as well as type of
software configuration he needs to use to meet the SLA using
our empirical dataset. His selection based on our data will
not be 100% accurate but that provides an initial starting
point, or he can find the expected system behavior based on
his budget and then adjust the SLA.

Data metrics
Normal Small Normal MySQL

All All in paper
MySQL MySQL PostgreSQL Cluster

experiments 871 1,352 1,053 416 6,318 42 (0.67%)
nodes 15,769 18,382 17,693 6656 91,598 1,590 (1.7%)
data pts. 459.7M 713.4M 555.7M 223.7M 3,334.1M 68.35M (2%)

Data size 82.8 GB 129.3 GB 70.6 GB 40.2 GB 525.6 GB 4.1 GB (0.7%)

Table 1: Data set size and complexity for RUBBoS experiments.

(a) Software setup.

Function Software

Web server Apache 2.0.54

Application server
Apache Tomcat
5.5.17

Cluster middleware C-JDBC 2.0.2

Database server
MySQL 5.0.51a
PostgreSQL 8.3.1
MySQL Cluster 6.2.15

Operating system
Redhat FC4
Kernel 2.6.12

System monitor Systat 7.0.2

(b) Hardware node setup.

Type Components

Normal-Emulab Processor Xeon 3GHz 64-bit
Memory 2GB
Network 6 x 1Gbps
Disk 2 x 146GB 10,000rpm

Small-Emulab Processor PIII 600Mhz 32-bit
Memory 256MB
Network 5 x 100Mbps
Disk 13GB 7,200rpm

Small-Amazon EC2 Processor 1 EC2 Compute Unit 32-bit
Memory 1.7 GB

Lareg-Amazon EC2 Processor 4 EC2 Compute Units 64-bit
Memory 7.5 GB

Table 2: Details of the experimental setup.

Figure 1: Conect Learning : Standalone implemen-
tation

We have implemented our Application server version of
AutoSys using Java and Java Server Pages. In our imple-
mentation we have incorporated the CBR life cycle (Re-
trieve, Revise, Retain and Reuse) using cookie based ses-
sion management; as a result once he enters into the system
his credential will be there in the system as long as he has
valid cookies. One of the key design goal was to provide a
fast response to the users, depending on the type of CBR
retrieving algorithms. As we have discussed in the Evalua-
tion section we find Cover Tree based retrieving algorithm
outperforms other algorithms as well as has a very good ac-
curacy. At the system startup time we populate and build
the case base and then we use it throughout the running
time of the system. Our current implementation uses in-

memory version of HyperSQL [7] DMBS, however we can
easily move to different database management system since
we use Apache Hibernate as the ORM.

4.3 Cover Tree implementation
The cover tree is a tree data structure for fast nearest

neighbor operations, in general n point metric spaces (where
the data set consists of n points). We first pick the first case
from the case base and obtain the similarity between this
case and the the rest of the cases in the case base. We
then divide the other cases into 4 groups by the similarity
measure. In those 4 groups, we pick up the first case in each
group and then obtain the similarity between selected case
and the other cases in the group. We then divide the other
cases into 4 groups by the similarity measure. Then we have
totally 42 groups. Likewise we continue the process until we
reach the level 0, and then we have 48 nodes in the tree.
Thus each leaf node covers one or more cases (cover set).

At the time of search we follow exactly the same procedure
as we follow during the tree building, first we clone the tree
and then try to insert the query into the cloned tree and find
the K nearest neighbors. In our algorithms we have chosen
our base as 4 and number of levels to be 8. The main reason
behind that is that it would be enough to build a somewhat
balanced tree. One of the main important factors behind
the algorithm is the distance function. In our case we use
similarity function as the distance function. However during
the experiments we found that just having the similarity
between the cases does not build a balanced tree, so we
incorporated a “mod” function to the distance function. As
a result, our distance function is combination of similarity
function and mod function, and it is a one-way function.

4.4 Concept Learning Implementation
In this algorithm, it tries to classify the case into a specific

category. With the system dataset, there are two categories,
i.e., bottleneck (CPU utilization => 95%) and no bottleneck
(CPU utilization < 95%). It tries to classify the case into the

two categories by using the important features of the cate-
gories. It will first learn what the features of the categories
are and how important those features are. Then it will use
the knowledge to classify the case into the two categories.

For example, we have 561 cases and 423 of them are in
the bottlenecks category. From these 423 cases, we count
the number of the cases for different features. For instance,
for feature “DB node=4”, we may have 282 out of 423 cases
which have CPU utilization above 95%. Then, we map the
specific feature “DB node=4” to 282 cases in the category
“bottlenecks”. Similarly, we may map the rest to “no bottle-
neck”. That means, if the case has value “DB node=4”, it
should 66% be classified in the category “bottlenecks” while
33% in the category “no bottlenecks”. When the customer
gives the value of the features like number of nodes, work-
loads, max client the algorithm will do the comparison for
all the features and give the final classification result. The
customer can also modify the value of the features, change
the result and retain the cases to “teach” the CBR system.

5. EVALUATION
This section provides evaluation of our two algorithms

based on initialization time, query processing time and ac-
curacy.

5.1 Initialization Time
First to collect information about query processing time

and initialization time we instrument our program to collect
time-stamps information. When collecting those informa-
tion, we run the initialization process 10 times and then get
the average initialization time, and Table 3 shows the ini-
tialization time for the two algorithm. It is clear from the
Table 3 that the initialization time for the cover tree is com-
paratively higher, the main reason is in the case of cover
tree it has to build the full tree at the initialization time,
as the dataset increases time also increases. Because when
the number of cases in case base become higher number of
comparisons become higher since the time is not linearly
correlated with the size. However in concept learning, it
scans once so time take to initialize is very low. For the
comparison purposes we have also evaluated the default re-
trieving algorithm in jColibri framework, which outperform
the two algorithms when it come to initialization, because it
does not involve any comparison work at the initialization
time. Here total time is combination of database populating
time and case base building time, in both the cases database
populating time is same.

Algorithm Initialization Time (ms)

Cover Tree 180,391
Concept Based 12,032
Jcolibri default 10,718

Table 3: Initialization Time Comparison

5.2 Query processing time (Retrieving time)
Table 4 provides a query processing time for the two al-

gorithms. When we calculate the query processing time; we
first select one query and run it for 10 times and then calcu-
lated the average processing time. As the Table 4 illustrates
cover tree is much faster compared to the default retrieving

algorithm in Jcolibri, and which is what we want for a Web
application, since user does not want to wait too long to get
the response.

Algorithm Processing Time (ms)

Cover Tree 79.6
Concept Based 46.9
Jcolibri default 255.7

Table 4: Query processing time

5.3 Retrieval Accuracy
We use a “leave-one-out” method (where one case is re-

moved from the case base and used as the query). Subse-
quently we conducted this for 2000 cases in Cover tree and
3000 cases in jColibri default algorithm and our accuracy
values are shown in Table 5. One thing to note here is that
in both the cases we select the first five cases and see whether
it contains the corresponding description for the query if so
we make as correct else it is wrong. In the case of cover tree
we have some less accuracy, and main reason is that the data
set contains number of similar cases, so cover tree will find
most of them, and when we filter 5 cases those cases might
not come to the list, however if we increase the number of
interested cases then both have the similar accuracy.

According to these results we can claim that cover tree is
much suitable for the retrieving algorithm for the web appli-
cation, since it has a very good accuracy and faster retriev-
ing time. In the case of Concept learning we have acceptable
accuracy, and the justification is in our algorithm where we
have considered the average CPU to find the bottlenecks, in
reality we have multi-bottlenecks and just getting average
CPU does not provide the accurate results. As an improve-
ment we need to improve our algorithm to take the density
analysis of CPU rather than taking the average.

6. RELATED WORK
There are a bunch of works towards automatic system con-

figuration issues. Kamalika et al. [8] discussed the server al-
location problem in multi-tier system and in their approach
they study computational complexity of the server allocation
as a non-linear optimization problem, which they call the
multi-tier problem. First they show, for the case of variable
number of tiers, the decision version of this problem is NP-
Complete. Then they present a simple two-approximation
algorithm which runs in linear time and a fully polyno-
mial time approximation scheme. For the case of constant
number of tiers, they show that the problem is polynomial
time solvable. Their approach is totally based on theoretical
background, when it come to practice system are much more
complex and it is hard to represent as an equation of set of
resources and cost, in our approach we test the system using
real application and real hardware and then collect the data,
based on those data we can provide a much better solution.

Zhang et al. [9] have modeled the multi-tier resource al-
location problem as a non-linear integer optimization prob-
lem and proposed heuristics to solve it optimally. Zhu et
al. [10] addressed the issue of allocating resources (machines)
in a tree-like topology of a data center, considering perfor-
mance constraints such as link bandwidth and switch ca-
pacity while minimizing communication delay between the

Algorithm Number Query cases Correct Cases Incorrect cases Percentage (100%)

Cover Tree 200 194 6 97.00%
Jcolibri default 300 298 2 99.33%

Concept (bottlenecks) 247 162 85 65.58%
Concept (no bottlenecks) 78 70 8 89.74%

Table 5: Retrieval Accuracy

assigned servers. They propose a mathematical optimiza-
tion model with binary variables for optimally configuring
the topology. Our work differs also from this, because in our
approach we use empirical analysis, and there we have con-
ducted experiments on several different configurations and
collected data.

Malkowski et al. [12] have discussed about a unique ap-
proach to configuration planning based on an iterative and
interactive data refinement process. More concretely, their
methodology correlates economic goals with sound techni-
cal data to derive intuitive domain insights. They have also
implemented their methodology as the CloudXplor Tool to
provide a proof of concept and exemplify a concrete use case.
CloudXplor, which can be modularly embedded in generic
resource management frameworks, illustrates the benefits of
empirical configuration planning. To some extents our ap-
proach and their approach has number of similarities, both
the approaches uses the empirical data for the configuration
planning. One of the main difference is that we have used
well known case base reasoning approach to provide a solu-
tion to a given configuration problem. One other difference
is our web application is publicly available, so anyone who
wants to find a solution to a system configuration problem
can use our tool.

7. CONCLUSION
With the widespread use of web application, and espe-

cially increasing popularity, e-commerce, social networks,
web services and cloud computing have introduced a number
of research challenges to find the optimum system configu-
ration to support service level agreements and to meet the
quality of service requirements. In the recent research sys-
tem configuration has become a difficult task due to cloud
computing, green resource management challenge. In this
paper we have developed a tool to use empirical data and
case base reasoning approaches to find the system configura-
tion to meet certain SLA and for a given configuration to find
the availability of the bottlenecks and location of the bot-
tlenecks. We have also evaluated our implementation based
on retrieving time and accuracy and find that our system
perform well in both areas. Our immediate future work is
to convert the existing data into our case base, for this paper
we have only use less than 10% of the available data. Sec-
ond, current implementation of the Web application does
not support the concept learning, so we need to integrate
concept learning into that. Finally, we need to graphically
represent the existence of system bottlenecks and optimum
configuration.

8. REFERENCES
[1] Emulab - Network Emulation Testbe.

http://www.emulab.net.

[2] The Elba project.
http://www.cc.gatech.edu/systems/projects/Elba/.

[3] RUBBoS: Bulletin board benchmark.
http://jmob.objectweb.org/rubbos.html.

[4] RUBiS: Rice University Bidding System.
http://rubis.ow2.org/.

[5] Amazon EC2: Amazon Elastic Compute Cloud.
http://aws.amazon.com/ec2/.

[6] jCOLIBRI: CBR Framework.
http://sourceforge.net/projects/jcolibri-cbr/.

[7] HyperSQL. http://sourceforge.net/projects/hypersql/.
[8] Kamalika Chaudhuri, Anshul Kothari, Ram Swaminathan,

Robert Tarjan, Alex Zhang, Yunhong Zhou. Server
Allocation Problem for Multi-Tiered Applications. In
Algorithmica, 2007.

[9] A. Zhang, P. Santos, D. Beyer,& H.-K. Tang. Optimal
server resource allocation using an open queueing network
model of response time. In Technical Report
HPL-2002-301, HP Labs, 2002.

[10] X. Zhu, C. Santos, J. Ward, D. Beyer, & S. Singhal.
Resource assignment for large-scale computing utilities
using mathematical programming In Technical Report
HPL-2003-243R1, HP Labs, 2003.

[11] Galen Swint, Gueyoung Jung, Calton Pu, Akhil Sahai.
Automated Staging for Built-to-Order Application Systems.
In IFIP/IEEE Network Operations and Management
Symposium (NOMS 2006), April 2006, Vancouver, Canada.

[12] Simon Malkowski, Markus Hedwigy, Deepal Jayasinghe &
Calton Pu. CloudXplor: A Tool for Conguration Planning
in Clouds Based on Empirical Data. In ACM SAC, 2010.

[13] Galen Swint, Calton Pu, Charles Consel, Gueyoung Jung,
Akhil Sahai, Wenchang Yan, Younggyun Koh, Qinyi Wu.
Clearwater - Extensible, Flexible, Modular Code
Generation. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software
Engineering (ASE 2005),November 7-11, 2005. Long
Beach, California.

[14] Sahai, Akhil, Calton Pu, Gueyoung Jung, Qinyi Wu,
Wenchang Yan, Galen Swint. Towards Automated
Deployment of Built-to-Order Systems. In Proceedings of
the 16th IFIP/IEEE Distributed Systems; Operation and
Management (DSOM 2005), AOctober 24-26, 2005.
Barcelona, Spain.

[15] Alina Beygelzimer, Sham Kakade, John Langford. Cover
Trees for Nearest Neighbor. In Proceedings of the 23rd
International Conference on Machine Learning,
Pittsburgh, PA, 2006.

[16] B. W. Porter , R. Bareiss , R. C. Holte. Concept learning
and heuristic classification in weak-theory domains. In
Artificial Intelligence, v.45 n.1-2, p.229-263, Pittsburgh,
Sep. 1990.

[17] Krauthgamer, R & Lee, J. The black-box complexity of
nearest neighbor search. In Proceedings of the 31st
International Colloquium on Automata, Languages and

Programming (pp. 858Ű869), 2004.

[18] Karger, D., & Ruhl, M Finding nearest neighbors in growth
restricted metrics. In Proceedings of the 34th Annual ACM

Symposium on Theory of Computing (pp. 741Ű750), 2002.

